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An equivalence is established between generalized master equations and 
continuous-time random walks by means of an explicit relationship between 
~b(t), which is the pausing time distribution in the theory of continuous-time 
random walks, and ~(t), which represents the memory in the kernel of a 
generalized master equation. The result of Bedeaux, Lakatos-Lindenburg, 
and Shuler concerning the equivalence of the Markovian master equation 
and a continuous-time random walk with an exponential distribution for 
~(t) is recovered immediately. Some explicit examples of ~(t) and ~b(t) are 
also presented, including one which leads to the equation of telegraphy. 

KEY W O R D S :  Generalized master equations; random walks; statistical 
mechanics; t ransport  theory. 

1. I N T R O D U C T I O N  

A standard starting point for the discussion of various random walks and 
other transport processes is the master equation 

dff(l, t)/dt = --c~P(1, t) + a ~ p(l, 1') P(I', t) (1) 

This study was partially supported by ARPA and monitored by ONR Contract No. 
(N00014-17-C-0308). 
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E. W. Montroll  and H. Sober, which will appear in Volume 9, Number  2, of this journal,  
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where P(I, t) is the probability that a system of interest is in state I at time t 
and ap(l, l') is the probability per unit time of a transition from l' to L 
Equation (1) is of course equivalent to the "gain-loss" form of the master 
equation 

dP(l, t ) /dt  = ~ ~, [p(l, l ') 15(I', t)  - -  p(t ' ,  1) fi(l, t)] (2a) 
U 

since transition probabilities have the normalization 

~ p ( l ' ,  l) = 1 (2b) 

We now interpret the states {/} to be lattice points on a periodic space 
lattice and the system to be a random walker on the lattice. This intepretation 
is not necessary but it is made to give a direct contact with the results of 
Ref. 1. It was emphasized there that certain interesting random walks cannot 
be described by (1). 

The basic quantity employed in the preceding paper is the pausing time 
distribution function r (the probability density function for the time t 
between the arrival of a walker at a given lattice point and the initiation of 
the next step to another site). All lattice points were postulated to be 
equivalent (periodic boundary conditions being used) so that r can be 
taken to be universal for all points. The methods of the preceding paper 
involve the random walk generating function which satisfies the Green's 
function equation [with P(I, 0) ---- 3~,0 ] 

G(I, z) - -  z ~ p( l  - -  l ') a( l ' ,  z) = ~,o (3a) 

The form for G(I, z) on a d-dimensional periodic lattice with N • N • N • ..- 
lattice points in each direction (with periodic boundary conditions) is 

N 

G(I, z) = N -a ~ ... ~ e'k'~][1 --  zA(k)] (3b) 
{s~.=l} 

where kj = 2rrsr and A(k) is the so-called structure function 

A(k) = ~ p(l)  e ~'~ (3c) 
l 

The quantity P(L t) was shown to be related to G(/, z) through the inverse 
Laplace transform formula (lm 

P(I, t)  1 -~ e ~ du {[1 -- ~b*(u)]/u} G(l, ~b*(u)) (4) 

where ~b*(u) is the Laplace transform of r 
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It was emphasized in Ref. 1 that Eq. (4) can be used to analyze processes 
which do not lie within the reach of  the master equation (1); furthermore it 
has been shown by Bedeaux et al. ~3) that when one chooses r to be an 
exponential distribution, expression (4) is identical to the solution of  (1) 
that corresponds to the initial condition P(l, 0) = 8~.0. For no other form 
of r are the two expressions for P(l, t) identical for all t > 0. 

Generalized master equations have appeared naturally for non- 
Markovian processes associated with nonequilibrium phenomena. ~4) They 
have the form 

d-P(l, t)/dt = fo dr ~. [K~j(t --  r) P( j ,  7) -- K~(t  --  r)/~(l, r)] 
$ 

(5) 

In the theory of nonequilibrium statistical mechanics the kernels {Ku(t)} are 
derived from dynamics. We shall not be concerned with those results but 
merely consider Eq. (5) to characterize certain stochastic processes. 

The main result of this note is to establish an equivalence between 
generalized master equations such as (5) and continuous-time random walks 
characterized by (4). 

2. T H E  E Q U I V A L E N C E  

Since in the special lattice walk with which we are concerned all lattice 
points are equivalent, the form of (5) appropriate for our walk would have 
kernels of  the following type: 

Ktj(t) =~ r  (6) 

where p(l) is just the transition probability which appears in (3a). Then (5) 
becomes 

t 

diP(l, t)/dt = fo ~(t  --  r)[--/5(/, r) + ~ '  p(1 - -  l') P(l ' ,  7)] dr 
l" 

(7) 

where we have used the conservation of probability equation 

Z p ( r  - z) = 1 

If initially the walker is at the origin so that/sz(0) = gz.o, it is easily shown 
by taking Laplace transforms of (7) and comparing the resulting equation 
with (3) that, r being the Laplace transform of r 

= . o _ ~  e ~ du  {[u + r  a ( t ,  r  + r (8) 
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By comparing (8) and (4), it is evident that Eq. (7) is an appropriate charac- 
terization of the random walks described in Ref. 1 provided that one sets 

which is equivalent to 

4 *(u) = u~b*(u)/[1 - -  ~b*(u)] (9a) 

r = r + 4*(u)] (9b) 

If one sets u = /co, q~*(u) is closely related to the frequency-dependent 
diffusion constant. (5) The reciprocal of q~*(u) also appears naturally in the 
application of linear response theory to random walk transport. (6) 

Note that ~b(t) and q~(t) are related by the integrodifferential equation 

d~b/dt + 2 8 ( 0  ~b(O) = q~(t) - -  fo d?(T) ~b(t - -  z) dr  (10) 

Note that the random walks described in Ref. 1 can also be characterized 
through the following equation provided I =/= 0: 

fot fi(l,  t)  = dr  t~(t - -  T) ~ p ( l  - -  l') P(l ' ,  -r) dl) 

This form of the equation can be easily established with the help of the pre- 
ceding analysis and it shows how the introduction of the pausing time distribu- 
tion function ~b(t) brings about a generalization of the Chapman-Kolmogorov 
equation to non-Markovian situations. 

3. S O M E  SPECIAL  E X A M P L E S  

We now consider several special examples of the pausing time distribu- 
tion function and find the differential equations appropriate to those ~b(t). 
The first example will be chosen to yield the Markovian master equation (1). 
Let 

~b(t) = ~e -~ (12a) 

Then by taking Laplace transforms and applying (9), we find 

~b*(u) = ~/(~ + u) and ~*(u) = ~ (lZb) 

so that 
r = 2o~3(t) (12c) 

When this expression is substituted into (7) the simple master equation is 
obtained. In light of the relation between the ~b(t) and 4'(0 established in this 
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paper, the analysis of Ref. 3 which leads to this conclusion is seen to be 
exactly equivalent to the remark that (7) leads to (1) when ~(t) is a delta 
function. 

Bedeaux et al. ~} have also shown that when the moments 

tz, = t~b(t) dt (13) 

are all finite, the master equation is appropriate for a description of a random 
walk at times which are large compared with 

t* = sup~, /n  !]1/, (14) 

Our second example is chosen to derive an equation which at early times 
after the walk has started yields results which are quite different from those 
that would follow from (1) and yet which at large times become equivalent 
to them. 

Let us consider (with A 2 > 4a) 

~b(t) -~ 2a(`1 ~ -- 4a)-1/2 e-~t/~ sinh[�89 ~ -- 4a)1/~] (15) 

which is equivalent to the difference between two exponentials. The corre- 
sponding expression for q~(t) is 

4(0 = ae-at (16) 

When (7) is differentiated with respect to t and (16) is substituted into the 
resulting expression the ensuing equation is 

Pet(l, t) + APt(/, t) = a I--P(/, t) + ~ p(l --  t') P(l', t)] (17) 

If  steps are taken to nearest-neighbor points only and if the lattice 
spacings are made very small, then by proceeding to the continuum limit 
this equation takes the form of the telegrapher's equation (with P, =- eP/Ot, 
etc.) 

a-XPu + (A/a) Pt = D P ~  + kP~ (18) 

the D and ,t being appropriately defined. It is known that at early times an 
initial pulse propagates as a wave, while at later times it propagates as a 
diffusion packet. This phenomenon was observed in the early days of tele- 
graphyJ 7) Signal diffusion reduced the data rate in long cables such as the 
early Atlantic cable. More recent applications of (17) or (18) have been to 
propagation of impulses in nerves and to exciton transport in photo- 
synthetic units.(8) 

822[9]I-4. 
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The concept of the pausing time associated with a nondelta r or a 
nonexponential r is particularly physical in the problem of exciton trans- 
port  in photosynthetic units. (An exciton hops f rom site to site but pauses at 
each site. Lattice vibrations provide a relaxation mechanism which yields a 
pausing time of the order of  10 -12 sec.) The traditional theory of exciton 
transport  postulates a Markovian random walk which corresponds to an 
exponential r and therefore a deltalike r However, this represents an 
instantaneous relaxation of the exciton at every site. A general theory which 
takes into account the actual non-Markovian nature of the process and the 
finite magnitude (10 42 sec) of the relaxation time has been developed 
recently. Is~ Equations like (7) and (17) have been used 191 to analyze the oscilla- 
tory approach to equilibrium observed in a study of certain models in non- 
equilibrium statistical mechanics. 

Since it was pointed out in Ref. 1 that there is some evidence in transient 
photoconductivity experiments that r may not have any finite moments, 
we close our discussion with a consideration of one of the forms of ~b(t) 
without moments which was presented there. We choose 

r = 4a2[exp(ta2)] i 2 erfc(atl/2) (19a) 

Since 

r = [1 + (ul/~/a)] -~ (19b) 

r = a2{1 - -  [1 + (ul12/2a)] -1} (19c) 

whose Laplace transform is 

r = 2aZ3(t) - -  2a3(Trt) -1/~ + 4a4[exp(4ta~)] erfc(2atl/~) (20) 

R E F E R E N C E S  

1. E. W. Montroll and H. Scher, J. Stat. Phys. 9(2) (1973). 
2. E. W. Montroll and G. H. Weiss, J. Math. Phys. 6:167 (1965). 
3. D. Bedeaux, K. Lakatos-Lindenberg, and K. E. Shuler, J. Math. Phys. 12:2116 (1971). 
4. L. Van Hove, Physica 23:441 (1957); I. Prigogine and P. Resibois, Physica 27:629 

(1961); R. W. Zwanzig, Physica 30:1109 (1964); E. W. Montroll, in Fundamental 
Problems in Statistical Mechanics, E. G. D. Cohen, ed., North-Holland, Amsterdam 
(1962). 

5. H. Scher and M. Lax, J. Non-Cryst. Solids 8:497 (1972). 
6. K. Lakatos-Lindenburg and D. Bedeaux, Physica 57:157 (1972). 
7. O. Heaviside, Phil. Mag. 11:135 (1876); W. Thomson (Lord Kelvin), Proc. Roy. Soc. 

u (1855); G. Kirchhoff, Ann. d. Phys. C 193:25 (1857). 
8. V. M. Kenkre, submitted to J. Chem. Phys. 
9. V. M. Kenkre, submitted to Phys. Rev. A. 


